Tutorial 6

In the following problems, V denotes a finite-dimensional inner product space.

1. Show that for all linear operators $T \in \mathcal{L}(V)$ there exist normal operators $N_{1}, N_{2} \in \mathcal{L}(V)$ such that $T=N_{1} N_{2}$.
2. Suppose the only singular value of $T \in \mathcal{L}(V)$ is 1 . What can you say about T ?
3. Let $T \in \mathcal{L}(V)$ be a linear operator. Show that 0 is a singular value of T if and only if 0 is an eigenvalue of T.
4. (7.D.8) Let $R, S \in \mathcal{L}(V)$ be such that R is positive and S is an isometry. Define $T=S R$. Show that $R=\sqrt{T^{*} T}$.
5. Suppose $T \in \mathcal{L}(V)$ is a linear operator and $v \in V$ is such that $\|v\|=1$. What is the largest possible value for $\|T(v)\|$?
6. Suppose $T \in \mathcal{L}(V)$ is such that for all $u, v \in V,\langle T(u), T(v)\rangle=0$ if and only if $\langle u, v\rangle=0$. Show there exists $c \in \mathbb{F}$ such that $c T$ is an isometry.
7. Suppose $T \in \mathcal{L}(V)$ has singular value decomposition

$$
T(v)=\sum_{k=1}^{n} s_{k}\left\langle v, e_{k}\right\rangle f_{k}
$$

where $s_{1}, \ldots, s_{n} \in \mathbb{F}$ are the singular values of T and $\left(e_{1}, \ldots, e_{n}\right),\left(f_{1}, \ldots, f_{n}\right)$ are orthonormal bases for V.

Let $r \in\{1, \ldots, n\}$ be such that $s_{k} \neq 0$ for $k \leq r$ and $s_{k}=0$ for $k>r$. Define $T^{+} \in \mathcal{L}(V)$ as

$$
T^{+}(v)=\sum_{k=1}^{r} \frac{1}{s_{k}}\left\langle v, f_{k}\right\rangle e_{k}
$$

The operator T^{+}is called the pseudoinverse of T. What can you deduce about T^{+}?
8. Suppose $\mathbb{F}=\mathbb{C}$ and $T \in \mathcal{L}(V)$ is a linear operator with eigenvalues $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ and singular values $s_{1}, \ldots, s_{n} \in \mathbb{R}$. Show that

$$
\left|\lambda_{1} \lambda_{2} \cdots \lambda_{n}\right|=s_{1} s_{2} \cdots s_{n}
$$

